

SSC8326GS1

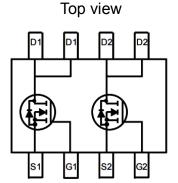
Dual N-Channel Enhancement Mode MOSFET

> Features

VDS	VGS	RDSON Typ.	ID
00)/	:40)/	20mR@4V5	0.4
20V	±12V	24mR@2V5	6A

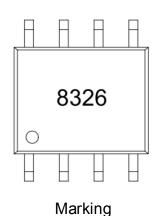
> Description

This device is produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage power management requiring a wild range of given voltage ratings(4.5V~25V) such as load switch and battery protection.


Applications

- Li Battery
- Battery charge
- Load Switch

Ordering Information


Device	Package	Shipping
SSC8326GS1	SOP-8	2500/Reel

Pin configuration

Bottom View

....

➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

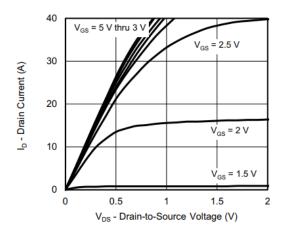
Symbol	Parameter	Ratings	Unit
V_{DSS}	Drain-to-Source Voltage	20	V
V_{GSS}	Gate-to-Source Voltage	±12	V
I_D	Continuous Drain Current ^a	6	Α
I _{DM}	Pulsed Drain Current ^b	24	Α
P _D	Power Dissipation ^c	3.1	W
P_{DSM}	Power Dissipation ^a	1.1	W
TJ	Operation junction temperature	-55 to 150	
T _{STG}	Storage temperature range	-55 to 150	°C

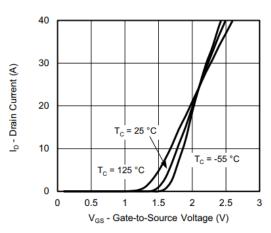
ightharpoonup Thermal Resistance Ratings(T_A=25°C unless otherwise noted)

Symbol	Parameter	Typical	Maximum	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance ^a		120	°C/W
R _{eJC}	R _{θJC} Junction-to-Case Thermal Resistance		45	C/ VV

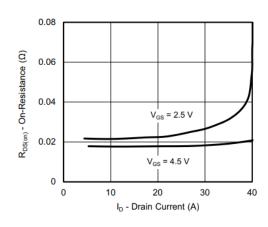
Note:

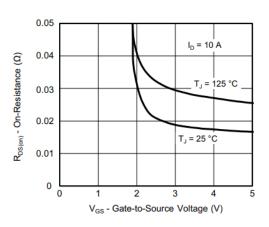
- a. The value of R θ JA is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with TA=25 \mathbb{C}° . The value in any given application depends on the user is specific board design. The current rating is based on the t \leq 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.



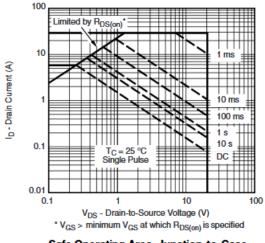

➤ Electronics Characteristics(T_A=25°C unless otherwise noted)

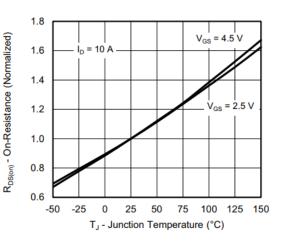
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=250uA	20			V	
V _{GS} (th)	Gate Threshold Voltage	VDS=VGS,ID=250uA	0.5	0.7	1	V	
Б	Drain-Source On-	VGS=4.5V,ID=2A		20	24	mR	
R _{DS(on)}	Resistance	VGS=2.5V,ID=2A		24	34		
I _{DSS}	Zero Gate Voltage Drain Current	VDS=20V,VGS=0V			1	uA	
I _{GSS}	Gate-Source leak	VGS=±12V,VDS=0V			±100	nA	
V _{SD}	Forward Voltage	VGS=0V,IS=1.7A		0.7	1.3	V	
G _{FS}	Transconductance	VDS=10V , ID=4A		10		S	
Ciss	Input Capacitance			610			
Coss	Output Capacitance	VDS=10V, VGS=0V,		335		pF	
Crss	Reverse Transfer Capacitance	f=1MHz		148			
$T_{D(ON)}$	Turn-on delay time			8			
Tr	Rise time	VGS=4.5V,		7		nc	
$T_{D(OFF)}$	Turn-off delay time	VDS=10V, RG=6R,ID=1A		35		ns	
Tf	Fall time			10			
Qg	Total Gate charge			10.5			
Qgs	Gate to Source charge	VGS=4.5V , VDS=15V , ID=3A		1.9		nC	
Qgd	Gate to Drain charge			1.8			


➤ Typical Characteristics(T_A=25°C unless otherwise noted)



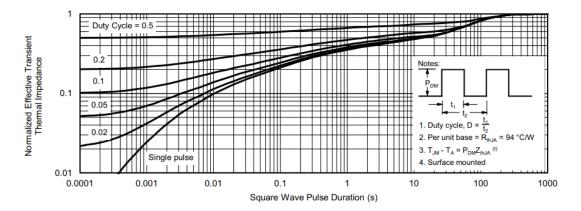
Output Characteristics


Transfer Characteristics



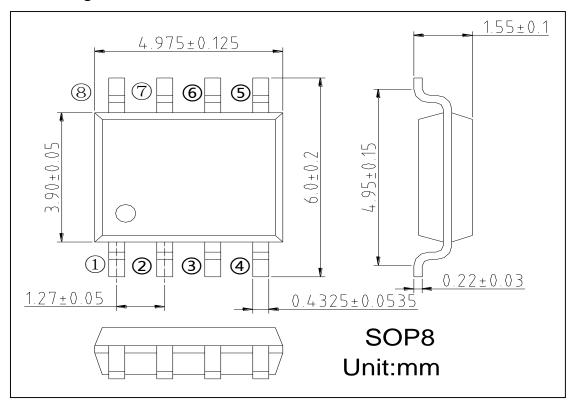
On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Gate-to-Source Voltage



Safe Operating Area, Junction-to-Case

On-Resistance vs. Junction Temperature



Normalized Thermal Transient Impedance, Junction-to-Ambient

Package Information

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.